Herboxidiene is structurally characterized by the tetrahydropyran acetic acid moiety and a side chain including a conjugated diene. Herboxidiene activates the synthesis of low-density lipoprotein (LDL) receptor by up-regulating the gene expression of the LDL receptor, which effectively reduces plasma cholesterol, and exhibits strong cytotoxic activity by up-regulating luciferase receptor gene expression as well as inducing both G1 and G2/M arrest in the WI-38 human tumor cell line.
Its production was significantly elevated nearly 13.5-fold (0.74 g/l) in a medium supplemented with glycerol (medium No. 6A6), and was more efficacious (1.08 g/l; 19.8-fold) in fed-batch fermentation at 36 h in medium No. 6A6, from Streptomyces chromofuscus. For further enhancement, regulatory genes metK1-sp and afsR-sp from Streptomyces peucetius were overexpressed using an expression vector, pIBR25, and similarly ACCase from Streptomyces coelicolor and two genes, metK1-sp and afsR-sp, were also overexpressed using an integration vector, pSET152, under the control of the strong ermE* promoter in Streptomyces chromofuscus. Only the recombinant strains S. chromofuscus SIBR, S. chromofuscus GIBR, and S. chromofuscus AFS produced more herboxidiene than the parental strain in optimized medium No. 6A6 with an increment of 1.32-fold (0.976 g/l), 3.85-fold (2.849 g/l), and 1.7-fold (1.258 g/l) respectively,
In herboxidien, using different substrate-flexible cytochrome P450s and glycosyltransferase, different novel derivatives of herboxidiene were generated with structural modifications by hydroxylation or epoxidation or conjugation with a glucose moiety. Moreover, two isomers of herboxidiene containing extra tetrahydrofuran or tetrahydropyran moiety in addition to the existing tetrahydropyran moiety were characterized. The hydroxylated products for both of these compounds were also isolated and characterized from S. chromofuscus PikC harboring pikC from the pikromycin gene cluster of S. venezuelae and S. chromofuscus EryF harboring eryF from the erythromycin gene cluster of Saccharopolyspora erythraea. The compounds generated were characterized by high-resolution quadrupole-time of flight-electrospray ionization-mass spectrometry (HR-QTOF ESI/MS) and NMR analyses. The evaluation of antibacterial activity against three Gram-positive bacteria, Micrococcus luteus, Bacillus subtilis, and Staphylococcus aureus, indicated that modification resulted in a transition from anticancer to antibacterial potency.